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Abstract

Rolling bearings are common and vital elements in rotating machinery and vibration signal is a kind of effective mean to

characterize the status of rolling bearing fault and its severity. In this paper, a novel method is introduced to realize

classification of fault signal without extracting feature vector preliminarily. By estimating the time delay and embedding

dimension of time series, vibration signal is reconstructed into phase space and Gaussian mixture model (GMM) is

established for every kind of fault signal in the reconstructed phase space. After these models are built, classification of

fault signal is accomplished by computing the conditional likelihoods of the signal under each learned GMM model and

selecting the model with the highest likelihood. By testifying of vibration signal under different kinds of bearing status, it is

proved that this method is effective for classifying not only fault types but also fault severity. Moreover, all parameters

needed in this method could be obtained by analyzing the time series directly so it is very suitable for industry application.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Rolling bearings are commonly used components in many kinds of machinery. How to identify its fault
status and judge its fault type and severity is important in condition monitoring of mechanical equipment.
Vibration analysis has been proven to be an effective means for fault diagnosis. For decades, lots of methods
have been proposed to extract and analyze features of vibration signal so as to realize fault diagnosis. These
methods include autoregressive modeling [1], empirical model decomposition (EMD) [2] and wavelet and
wavelet packet methods [3–5], etc. However, mechanical vibration signals demonstrate lots of nonlinear
characteristics and the traditional feature extraction methods mentioned above cannot effectively extract these
nonlinear fault features [6]. So recently, many researchers try to extract these nonlinear features from vibration
signal and judge the fault type according to them. Jingqiu proposes an improved correlation dimension
algorithm to realize the diagnosis of rolling bearings [7]. Yan propose that computation of correlation
dimension is too complex and Lempel–Ziv complexity [8] and approximate entropy [9] are more suitable for
characterizing the nonlinear feature of bearing fault. To realize more accurate fault diagnosis, multiple
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nonlinear features such as box-counting dimension, multiscale fractal dimension [10,11], and even mel-
frequency cepstral coefficients [12] are extracted simultaneously from vibration signal and support vector
machine (SVM) [6] and hidden Markov model (HMM) [12] is constructed to realize the mapping between fault
type and feature vector. These results show that fault diagnosis based on nonlinear feature extraction is an
effective method. But in real application, it is quite a difficult problem on how to select or determine the
threshold value of these nonlinear features for finite sample signal. Moreover these features are always not
sensitive to change of fault severity, especially when noise exists. So up to now, most nonlinear features are
selected only to judge the type of fault and the threshold value is determined according to different equipment
which will spend lots of time. In this paper, the periodicity and nonlinearity of vibration signal is characterized
by rearranging the vibration signal into reconstructed phase space (RPS) in which the phase trajectory of
different kinds of signal will demonstrate different structure. It is worthy of noting that the size of fault could
also produce obvious influence on phase trajectory in RPS. To describe the phase trajectory of different signal
statistically, Gaussian mixture model (GMM) is utilized to fit the distribution of phase trajectory for every
fault signal. After GMM for every kind of signal is learned, maximum likelihood (ML) Bayesian classifier is
utilized to realize the classification of vibration signal. The advantage of this method is that all parameters are
obtained by analyzing the time series directly. By analyzing the bearing signal of different fault status, it is
proven that this method is very effective for classification of not only fault type but also its severity.

The remainder of this paper is organized as follows: Section 2 describes the main principle of method used in
this paper which includes method of RPS and GMM. The whole scheme of fault classification is also given in
this section. In Section 3, vibration signal from different bearing status is collected and analyzed using
methods proposed above. Moreover, selection of time delay, embedding dimension and number of GMM are
discussed in this section and the optimal value of these parameters are determined for learning of GMM in
RPS and realizing classification of fault type and its severity simultaneously. In Section 4, some useful
conclusions are drawn and emphasis of further study is also given.

2. Methods and principles

2.1. Phase space reconstruction

In order to characterize the nonlinear feature of vibration signal, the dynamic system embedded in time
series need to be reconstructed. According to Takens’s theorem [13,14], a dynamic system can be obtained by
reconstructing phase space which is same as original system. RPS technique is founded on underlying
principles of dynamical system theory and have been practically applied to a variety of nonlinear signals
processing applications [15,16]. The basic idea of the RPS is that a scalar time series x(t) may be used to
construct a vector time series that is equivalent to the original dynamics from a topological point of view.
Based on time series x ¼ (x1, x2,y,xN), RPS matrix X could be obtained in which row vector is defined as

X n ¼ ½xn�ðd�1Þt;xn�dt; . . . ;xn�t;xn� (1)

where n is index of row vector of matrix X which range from 1+(d�1)t to N. Symbol N denotes the length of
time series. d and t is embedded dimension and time delay of RPS, respectively. A row vector Xn is a point in
the RPS. The sufficient condition for topological equivalence of RPS with original system is that d is greater
than twice the box counting dimension of the original system.

When d is not known, as is the case for most real systems, there are many methods to calculate the
embedded dimension. Cao’ method [14] is adopted in this paper. The advantage of this method is its
robustness to noise for vibration signal and there is no need to set the threshold value manually. Principle of
Cao’ method is described as follows. Suppose the dimension of RPS is d, the ith vector in this d dimensional
phase space is given as

X d
i ¼ ½xi�ðd�1Þt; xi�dt; . . . ; xi�t;xi� (2)

In this d dimensional space, one vector X d
ZðiÞ is nearest to the vector Xi

d, that is

kX d
i � X d

ZðiÞk ¼ min
j¼n�ðd�1Þt;...;N; jai

kX d
i � X d

j k1 (3)
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where X d
j 2 Rd and k � k1 is the L1 norm which is defined in Rd space. Similarly, if the dimension change

from d to d+1, the ith vector X dþ1
i and its nearest vector X dþ1

ZðiÞ could also be obtained in the phase space of
d+1 dimension. Then a(i, d) is defined as

aði; dÞ ¼
kX dþ1

i � X dþ1
ZðiÞ k

kX d
i � X d

ZðiÞk
(4)

For all vectors Xi (i ¼ 1+(d�1)t,y,N) in m and m+1 dimensional phase space, E(d) and E1(d) are defined
as [14]

EðdÞ ¼
1

N � dt

XN

i¼ðd�1Þt

aði; dÞ (5)

and

E1ðdÞ ¼
Eðd þ 1Þ

EðdÞ
(6)

If signal is deterministic, the embedding dimension exists. That is, when d is larger than a specified value d0,
E1 tends to a stable value and d0 is just the correct embedding dimension. But in real application, the length of
time series is always finite which results in difficult for judging whether the E1 is stable or not. So other
parameters are proposed which is given as [14]

E�ðdÞ ¼
1

N � dt

XN

i¼ðd�1Þt

jxd
i�dt � xd

ZðiÞ�dtj (7)

and

E2ðdÞ ¼
E�ðd þ 1Þ

E�ðdÞ
(8)

For a stochastic signal, E2 is equal to one and for a deterministic time series E2 change with the dimension d.
By analyzing the varying of E1 and E2 with the dimension d, the embedding dimension of time series could be
obtained. By Taken’s theory [13], the time lag t in Eq. (2) could be set to one. However, in practice, it has been
found that the appropriate selection of the time lag could reduce the required RPS dimension. A common
heuristic for determining time lag is to use the first minimum of the mutual information function. The average
mutual information of time series x ¼ (x1,x2,y,xN) is described as

IðtÞ ¼
XN

i¼1

Pðxi;xiþtÞ log2
Pðxi;xiþtÞ

PðxiÞPðxiþtÞ

� �
(9)

where P(xi), P(xi+t) is the probability density of xi and xi+t, respectively. Symbol P(xi,xi+t) is joint
probability density which could be obtained form two-dimensional histogram. So it is easy to get the
curve I(t) which represents different mutual information at different lag t. The time lag of phase space is
the first local minimum at the I(t) curve. Too small t value results in weak independency of time series. On the
other hand, if the t is too large, the variable may become independent. Therefore correct selection of time lag
is paramount.

2.2. GMM method

Fault of rolling bearing leads to change of dynamic characteristic of mechanical system and RPS is capable
of differentiating between signals generated by topologically different systems. By phase space reconstruction
of time series, phase trajectory of dynamical systems could be obtained. Generally some geometrical invariants
such as correlation dimension, Kolmogorov entropy and Lyapunov exponents are extracted from phase space
and adopted as feature vector for classification [8–10]. Because these features are calculated mostly in RPS, so
in comparison with these features, phase trajectory could provide more complete description of reconstructed
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dynamical system especially in the ability to characterize the periodicity and chaos of time series. Thus in this
paper, GMM is used to describe the probability distribution of multidimension vector in phase space. One
advantage of this model is its robustness to additive noise components which really exist in mechanical signal
[10,12]. Another advantage is that there is no need to concern which geometrical invariants or how many
nonlinear features need to be selected. Moreover, these features always need to be determined in advance and
usually they are selected empirically [13].

For a class of vibration signals, GMM is used to fit the probability distribution of phase points in RPS. For
a group of points in phase space of d dimension, the probability density function is given as

pðxÞ ¼
XM
m¼1

ompmðxÞ ¼
XM
m¼1

omN x;mm;
X

m

 !
(10)

Symbol Nðx; mm;
P

mÞ is the Gaussian probability density of d dimension in the phase space. om is the weight
value of each Gaussian distribution and M is the number of mixture model. This equation means that
probability density of a group of points in d dimensional space could be fit by the weighted sum of several
Gaussian probability density functions. Weight value of each Gaussian distribution satisfy

XM
m¼1

om ¼ 1 (11)

The parameters for the GMM is (om,mm,
P

m) which are estimated using the well-known expectation–
maximization (EM) algorithm [13]. This iterative method yields a ML estimation of these parameters. For
each class of signals, a GMM is built after it is reconstructed in phase space. The only parameter need to be
determined in advance is number of mixture model. There are many methods to determine the number of
mixture model such as AIC, BIC and some other methods which are referred in Ref. [17]. But it is worthy of
noting that this method is instructive and always inaccurate especially when noise exists. So in real application,
it is determined manually and it is proven to be feasible by analyzing rolling bearing vibration signal in the
next section.
2.3. Bayesian classifier

By building GMM model, a statistics model is constructed for every fault signal which represents the
probability distribution of every fault signal in RPS. Thus, for a new signal, Bayesian ML classifier is used
here to judge which class it belongs to. That is obtained by computing the conditional likelihoods of the signal
under each learned model and selecting the model with the highest likelihood. The likelihoods are computed
on a point-by-point basis from the learned GMM models:

pðX jciÞ ¼
YN

n¼1þðd�1Þt

pðX njciÞ (12)

where X is an RPS matrix of dimension d and time lag t of the signal, Xn is a point in the RPS, and p(Xn|ci) is
the probability of Xn given the ith class calculated using Eq. (12). The classification is realized by
calculating

ĉ ¼ arg max
i
ðpðX jciÞÞ (13)

where ĉ is the class which corresponds to the ML.
2.4. Method of classification based on RPS and GMM

As mentioned above, the RPS could be adopted to depict the nonlinear characteristic in the original time
series and GMM could describe the distribution of points in the RPS. So integration of these two methods
could be utilized to realize the classification of rolling bearing signal. The algorithm includes two stages.
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The first is learning or training stage in which RPS for every kind of fault signal is constructed and GMM is
built. This stage is described as the following three steps:

Step 1: Preparing for data used for learning of GMM. The main purpose of this step is to normalize the time
series so that the phase trajectory in every RPS has same scope.

Step 2: Calculating the time lag and embedding dimension of RPS. For comparison with each other, time
lag and embedding dimension must be determined and the same value for every kind of signal is selected. So in
this step time lag and embedding dimension must be calculated for every signal so as to judge whether a
uniformed value could be selected or not.

Step 3: Learning the GMM for each class. All samples are constructed in RPS and input into GMM so as to
calculate weight value of GMM. This step is done for every kind of fault signal so that all sample data is fitted
into GMM.

The second stage is classification. For a new vibration signal, its phase space is reconstructed firstly so as to obtain
its phase trajectory and input it into all GMM trained in the previous stage so as obtain the probability of it belongs
to each GMM, respectively. The class corresponding to the maximum probability is just the signal belongs to.
3. Experiment and discussions

3.1. Experiment data description

In order to testify the effect of method proposed above, experimental data were collected from ball bearing
of an induction motor driven mechanical system which was tested under 1 hp load [18].The whole scheme of
test rig is shown in Fig. 1. The test rig consists of four parts which are motor, torque transducer, dynameters,
and control electronics, respectively. Two SKF rolling bearings support the motor shaft. An accelerometer
was mounted on the motor housing at the drive end and fan end of the motor to acquire the vibration signals
from the bearing. Single point faults were introduced to the test bearings using electro-discharge machining
and motor speed was 1772 rev/min. The signal was sampled from four kinds of rolling element bearings and
each class of data corresponds to the following bearing conditions, respectively: (i) normal bearing; (ii) inner
race fault; (iii) ball fault; and (iv) outer race fault. Moreover, in order to testify the ability to classify the fault
severity, three kinds of fault sizes are utilized for the same fault type. Here the fault diameter is 0.007, 0.014,
and 0.021 in for every fault type. Thus the total number of sample type in this paper is 10.
3.2. Determination of time delay and embedding dimension

Theoretically time delay and embedding dimension value could be obtained for every kind of signal [14]. But
it is not practical in engineering application. So it is necessary to select a unique and suitable time delay and
embedding dimension for all samples. First variation of time delay for different kinds of vibration signal is
analyzed. Four kinds of signals which correspond to normal bearing status, ball fault of 0.007 in, inner race
fault of 0.007 in, and outer race fault of 0.007 in are selected, respectively. The maximum time delay is set to 32
and mutual information of each kind of signal is shown in Figs. 2(a–d).

Except for Fig. 2(a) in which the first minimum mutual information appears when delay is equal to four, the
first minimum mutual information in Figs. 2(b–d) appears at five. Moreover it shows that the time delay t in
Motor Torque Transducer Dynamometer 

Control Electronics 

Fig. 1. Scheme of test rig for rolling bearing.
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Fig. 2. Mutual information of different kinds of bearing signal: (a) normal status; (b) ball fault with diameter of 0.007 in; (c) inner race

fault with diameter of 0.007 in; (d) outer race fault with diameter of 0.007 in; (e) inner race fault with diameter of 0.014 in; and (f) inner race

fault with diameter of 0.021 in.
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Fig. 2(a) is very close to Figs. 2(b–d). Thus a uniform value of time delay t could be set to five. For further
testifying the correctness, the size of inner race is changed and its mutual information is calculated for
vibration signal of bearings whose fault size are 0.014 and 0.021 in so as to obtain the Figs. 2(e–f) in which that
the first minimum mutual information is still equal to five. The analysis of other fault signal which is not
plotted here could also draw the same conclusion. So finally the time delay t is set to five.

The next step is to determine the embedding dimension d. The data sampled under different bearing status
described above is adopted and Cao’method is taken to calculate E1(d) and E2(d) curve which are shown in
Figs. 3–8 in which (a) is the E1(d) curve and (b) is E2(d) curve.
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Fig. 3. E1(d) and E2(d) curve of normal bearing status.
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Fig. 6. E1(d) and E2(d) curve of outer race fault with diameter of 0.007 in.
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Fig. 7. E1(d) and E2(d) curve of inner race fault with diameter of 0.014 in.
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Fig. 8. E1(d) and E2(d) curve of inner race fault with diameter of 0.021 in.
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From (b) in Figs. 3–8 a conclusion could be drawn that signal is deterministic because E2(d) varies with the
embedding dimension d. Analysis of (a) in Figs. 3–8 show that whatever the type of signal is, the E1(d) begin to
tends to stationary when d is larger than 10 so here the embedding dimension is set to 10. Thus the structure of
RPS is time delay t being equal to five and embedding dimension d being equal to 10.

The third step is to obtain the phase trajectory in RPS for every kind of fault signal. The sample size is 4096
and the phase trajectory of different kinds of fault is shown in Figs. 9(a–f). Because the embedding dimension
d is 10 which is larger than three so that it is impossible to obtain a phase trajectory in a figure. Thus
multidimensional phase trajectory must be projected on two-dimension phase plane. For comparison and
simplification, only x(n) and x(n�t) is shown in Fig. 9 and projection on other phase plane is not plotted here,
but it is still used for building the GMM described in later section. In Fig. 9, there are obvious differences in
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Fig. 9. Graph of phase trajectory projection on (x(n), x(n�t)) plane for different kinds of bearing signal: (a) normal status; (b) ball fault

with diameter of 0.007 in; (c) inner race fault with diameter of 0.007 in; (d) outer race fault with diameter of 0.007 in; (e) inner race fault

with diameter of 0.014 in; and (f) inner race fault with diameter of 0.021 in.
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phase trajectory between different kinds of bearing status. As depicted in Fig. 9(a), phase trajectory of normal
bearing signal demonstrate dense points whose boundary is very irregular which shows that main component
of normal bearing signal is noise. However, phase trajectory in Figs. 9(b–f) show that dense orbits points are
surrounded by less dense points whose boundary is very regular. So chaos phenomenon does exist for all fault
signals [19]. However, the distribution, center, position, and size of phase orbit are very different even for
those fault signals which have the same fault type but different fault size. That is just why this method could be
used for classification of fault type and fault severity.
3.3. Selection of number of mixture model and sample sizes

After getting the phase trajectory of different kinds of fault, the next work is to build GMM for every kind
of bearing signal. An important parameter need to be determined here is number of mixture model. There are
many methods used to judge if the number is suitable or not such as AIC, BIC and etc. But these methods may
take much more time and the result is always not accurate when noise exists. Another parameter need to be
selected is sample size of vibration signal. Because these two parameters all bring influence on accurate rate of
classification, the number of mixture model and sample size of each fault signal are used for classification
simultaneously. Here a simple method is adopted to determine the value of these two parameters by
comparing the accuracy under different parameters. For comparison between different parameters, the same
sample number for each kind of fault is selected. Here, sample number used for learning of each GMM model
is set to 500 and the sample size used for classification and justification is set to 384.

Here four kinds of fault signal are taken as example. The bearing status of signal are normal bearing status,
inner race fault with its fault size equal to 0.007, 0.014 and 0.021 in. The number of GMM is 2, 4, 8, 16, and 32,
respectively. The accurate rate curve of every kind of signal with the variation of number of mixture model
under sample size being 512 is shown in Fig. 10 in which the accurate rate is almost not influenced by number
of mixture model when the number of GMM is larger than four, even the number of sample is reduced to 64.
As shown in Fig. 11, increase of number of mixture model also has less influence on accurate rate. So number
of mixture model utilized here is four. The variation of accurate rate with the sample size is given in Fig. 12 in
which index 1–7 represent the sample size is 128, 256, 512, 1024, 2048, 4096, and 8192, respectively. From
Fig. 12, a conclusion could be drawn that the accurate rate increases with the increase of sample size
correspondingly. But when sample size is larger than 1024, the increase of accurate rate is not obvious.
Considering that it may result in the increase of calculation load, so the size of sample used for classification is
set to 1024.
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Fig. 11. Variation of accurate rate with increase of number of GMM under sample of 64 points.
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Fig. 12. Variation of accurate rate with increase of sample size under GMM number is four.

Table 1

Hybrid fault classification under different fault type and severity for signal of 1024 points.

Fault Normal

status

0.007 in 0.014 in 0.021 in

Ball

fault

Inner

race

fault

Outer

race

fault

Ball

fault

Inner

race

fault

Outer

race

fault

Ball

fault

Inner

race

fault

Outer

race

fault

Accurate rate (%) 100 95.55 100 100 100 81.74 96.44 100 100 85.5
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3.4. Classification of fault types and its severity

After these parameters are calculated from time series directly, the whole classification model is built and the
results shown in Fig. 12 prove that classification is very accurate. For further testifying the correctness of this
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Table 2

Hybrid fault classification under different fault type and severity for signal of 2048 points.

Fault Normal

status

0.007 in 0.014 in 0.021 in

Ball

fault

Inner

race

fault

Outer

race

fault

Ball

fault

Inner

race

fault

Outer

race

fault

Ball

fault

Inner

race

fault

Outer

race

fault

Accurate rate (%) 100 100 100 100 100 99.48 100 100 100 100
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method, more complex situation is considered. The samples used for classification include different kinds of
fault signal under different fault size. Time delay is set to five, embedding dimension is set to 10, number of
mixture model is set to four and sample size of vibration signal is set to 1024 and 2048, respectively, the final
accurate rate of classifying these 10 kinds of bearing status is given in Tables 1 and 2 in which the accurate rate
is very high if the sample size is equal to 1024. Moreover if the sample size is 2048, the accurate rate could
almost reach to 100 percent which prove that this method could be used for classification of fault type and
fault size of rolling bearings simultaneously.

4. Conclusions

To realize accurate detection and classification of bearing faults, a novel method which integrates RPS and
GMM is presented in this paper. By appropriate reconstructing of vibration signal in phase space, the phase
trajectory of different kinds of fault signal could be obtained. From these phase trajectory, characteristic of
noise is found for vibration signal in normal status and chaos is found for fault signals. For different bearing
signal, the distribution, shape, and position of phase trajectory are different obviously. So this method could
be adopted for distinguishing between different bearing statuses. To realize the classification of bearing faults,
GMM is adopted to realize correct description of phase trajectory distribution in RPS. Comparing between
different parameters show that, when number of GMM is larger than four, its variation has slight influence on
accurate rate of classification. And the sample size has much influence on result of classification. Therefore,
correct selection of sample size could increase the accurate rate greatly. The main advantage of this method is
that all parameters, such as time delay, embedding dimension, number of mixture model, and sample size are
obtained only by analyzing bearing vibration signal directly so that they are not needed to be determined
empirically. Therefore, the classification is much more accurate and it is suitable for industry application. Of
course, signals adopted here are only single point fault, so the work in the next step could be focused on
classification for multiple points bearing fault. Moreover, the dynamic characteristic of rolling bearing should
be studied further to interpret why such phase trajectory is produced which is also a challenging job.
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